Market Confidence and Liquidity Hoarding

Volha Audzei

Czech National Bank and CERGE-EI
(Prague)

May 2016
Motivation

- Credit crunch and central banks policy
- No agreement about the policy effect in the literature:
 - Curdia and Woodford (2011) and Taylor and Williams (2009): was not efficient or irrelevant
 - Del Negro et al. (2011) and Christensen et al. (2014), Gertler and Karadi (2011): helped avoid more severe recession
- Liquidity hoarding
- Change in sentiment
Motivation
Liquidity hoarding
Motivation

Impact on bank’s lending standards
Motivation
Paper contribution

- Counterparty risk in the interbank market
- Liquidity hoarding
- Policy exercises:
 - liquidity provision, targeted liquidity provision, declining policy rate, relaxing collateral constraints
Model
Overview

- DSGE framework (Gertler and Karadi (2011))
- Continuum of banks, indexed by i, lend to the real sector and to each other
- Two types of assets:
 - safe (reserves), pays R_t^{res}
 - risky, pays R_{t+1}^k
- Banks differ by their beliefs about risky asset return,
 $\hat{E}_t R_t^k \sim N(\bar{R}_t^k, K_F^t, P_t^{K_F})$
Model
Overview

- Assumption 1:

\[R_t^k = \frac{\alpha \frac{P_t Y_t}{K_t} + (1 - \delta) Q_t \zeta_t}{Q_{t-1}} \]
Model
Overview

- **Assumption 1:**
 \[R_t^k = \frac{\alpha \frac{P_t}{K_t} Y_t + (1 - \delta) Q_t \zeta_t}{Q_{t-1}} \]

- **Assumption 2:**
 \[\zeta_t = \rho \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \quad (1) \]
Model
Overview

- Assumption 1:
 \[R_t^k = \frac{\alpha P_t Y_t}{K_t} + (1 - \delta) \frac{Q_t \zeta_t}{Q_{t-1}} \]
- Assumption 2:
 \[\zeta_t = \rho \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \quad (1) \]
- \(\mu_t \) is a persistent shock
 \[\mu_t = \rho \mu_{t-1} + \nu_t \]
Assumption 1:

\[R_t^k = \frac{\alpha \frac{P_t Y_t}{K_t} + (1 - \delta) Q_t \zeta_t}{Q_{t-1}} \]

Assumption 2:

\[\zeta_t = \rho_\zeta \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \quad (1) \]

- \(\mu_t \) is a persistent shock

\[\mu_t = \rho_\mu \mu_{t-1} + \nu_t \]

Experts’ opinions

\[\mu^i_t = \mu_t + \theta^i_t \quad (2) \]
Model

Bank's balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers' claims</td>
<td>Deposits</td>
</tr>
<tr>
<td>Reserves</td>
<td>Interbank borrowing</td>
</tr>
<tr>
<td>Interbank lending</td>
<td>Net worth</td>
</tr>
</tbody>
</table>
Model
Bank’s problem

- Each bank maximizes expected return, choosing α^i_t, h^i_t:

 \[
 r^i_t \hat{E} R^i_t + 1 \\
 h^i_t R_{\text{res}} \\
 p^i_t 1 \alpha^i_t h^i_t R_{\text{ib}} \\
 \hat{E} R^i_t + 1 R_{\text{ib}} L_i \text{ for lenders, } \lambda_b (\text{net worth}) \text{ for borrowers}
 \]
Model
Bank’s problem

• Each bank maximizes expected return, choosing α^i_t, h^i_t:

 • risky asset:

 \[\alpha^i_t \star \hat{E}^i_t R^k_{t+1} \]
Model
Bank’s problem

- Each bank maximizes expected return, choosing α^i_t, h^i_t:
 - risky asset:
 \[\alpha^i_t \cdot \hat{E}^i_t R^k_{t+1} \]
 - reserves:
 \[h^i_t \cdot R^\text{res}_t \]
Model

Bank’s problem

- Each bank maximizes expected return, choosing α_t^i, h_t^i:
 - risky asset:
 $$\alpha_t^i \times \hat{E}_t^i R^k_{t+1}$$
 - reserves:
 $$h_t^i \times R^{res}_t$$
 - interbank market lending:
 $$p_t^i \left(1 - \alpha_t^i - h_t^i\right) \times R^{ib}_t$$
Model
Bank’s problem

- Each bank maximizes expected return, choosing α_t^i, h_t^i:
 - risky asset:
 \[\alpha_t^i \cdot \hat{E}_t^i R_{t+1}^k \]
 - reserves:
 \[h_t^i \cdot R_{t}^{res} \]
 - interbank market lending:
 \[p_t^i \left(1 - \alpha_t^i - h_t^i \right) \cdot R_{t}^{ib} \]
 - or interbank market borrowing:
 \[\left(\hat{E}_t^i R_{t+1}^k - R_{t}^{ib} \right) \cdot L_t^i \]
Model

Bank’s problem

- Each bank maximizes expected return, choosing α^i_t, h^i_t:
 - risky asset:
 \[\alpha^i_t \cdot \hat{E}^i_t R^k_{t+1} \]
 - reserves:
 \[h^i_t \cdot R^{res}_t \]
 - interbank market lending:
 \[p^i_t \left(1 - \alpha^i_t - h^i_t \right) \cdot R^{ib}_t \]
 - or interbank market borrowing:
 \[\left(\hat{E}^i_t R^k_{t+1} - R^{ib}_t \right) \cdot L^i_t \]

- L^i_t interbank loan
 \[L^i_t = \begin{cases} 0, & \text{for lenders} \\ \lambda_b \cdot \text{(net worth)}, & \text{for borrowers} \end{cases} \]
Model
Bank's problem continued

- Collecting the terms by α_t^i:

$$\alpha_t^i \left(\hat{E}_t R_{t+1}^k - p_t^i R_{t}^{ib} \right)$$

- $\alpha_t^i = 1$ for $\hat{E}_t R_{t+1}^k \geq p_t^i R_{t}^{ib}$, $\alpha_t^i = 0$ for $\hat{E}_t R_{t+1}^k < p_t^i R_{t}^{ib}$

- Note: for each lender all borrowers are identical
- $p_t^i = \text{Prob} \left(\hat{E}_t R_{t+1}^k (1 + \lambda_b) > R_t d_t + \lambda_b R_{t}^{ib} \right)$

- A lender lends if $p_t^i * R_{t}^{ib} > R_{t}^{res}$, hoards otherwise
- A borrower borrows if $\hat{E}_t R_{t+1}^k \geq R_{t}^{ib}$
Model

Interbank market and beliefs

Hoard

Lend

Borrow

\(p^i R^{ib} = R^{res} \)

\(E^k R^k = p^i R^{ib} \)

\(E^k R^k = R^{ib} \)

Lenders and hoarders

Investors
Model

Crisis and policy responses

- "Fundamental" shock: \(\zeta_t = \rho \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \)
- Sentiment shock: \(\hat{\mu}_t^i = \mu_t + \eta^i_t \)
- Policy: \(\nabla^p_t = \kappa^p \left(R^k_{t+1} - R_t - (Rk - R) \right) \)
 - untargeted \(Q_t K_{t+1} + \text{Rest} = D_t + \psi_t (Q_t K_{t+1} + \text{Rest}) \)
 - targeted \(Q_t K_{t+1} + \text{Rest} = D_t + \psi^\text{targ}_t Q_t K_{t+1} \)
 - interest rate \(R^\text{res}_t - \nabla^p_t \)
 - collateral constraint \(\lambda_b - \nabla^\lambda_t \)
- Policy costs: \(\tau \psi_t (Q_t S_t + \text{Rest}) \) or \(\tau \psi^\text{targ}_t (Q_t S_t + \text{Rest}) \)
Results

Impulse Responses to Sentiment (5%) and Fundamental Shock (5%)
Results

Role of the interbank market

![Graphs showing policy response, prem, Y, C, Res, K, L, N, R, Rres, interbank lending, and share of borrowers.]
Results

Policy effects
Results
Policy effects continued
Conclusion

- Investors’ expectations generate long and large responses in model variables
- Banks hoard some liquidity provided by central bank due to their low sentiment
- Liquidity provision mitigates crisis slightly, but does not stop it, nor decreases its duration

Future Work

- ?
Motivation

Investor Sentiment

Market Volatility Index (VIX)