US Monetary Policy in a Globalized World

Jesús Crespo Cuaresma (WU, WIC, IIASA, WIFO)
Gernot Doppelhofer (NHH)
Martin Feldkircher (OeNB)
Florian Huber (WU)

Workshop DYME 2016
Prague, June 2016
Motivation

1 Globalization

- “... effective monetary policy making now requires taking into account a diverse set of global influences, many of which are not fully understood” Ben Bernanke, Stanford, 2007.

- “Monetary policy settings in major countries should continue to be carefully calibrated and clearly communicated, with cooperation among policymakers to help manage spillovers and spillbacks”, IMF, 2014.

2 Time variation

- Broad consensus that US monetary policy transmission has changed over time (Sims and Zha, 2006)

- Primiceri (2005), Boivin (2006), Boivin et al. (2010) find evidence for gradual variation in parameters and volatility over time. What does this imply for spillovers?
Agenda

- **Research questions:**
 1. Does the global economy respond to US monetary policy shocks?
 2. How does the reaction change over time?
 3. Do US interest rates react to foreign shocks?

- **Econometrics:** Time-varying parameter global vector autoregression with stochastic volatility (TVP-SV-GVAR).
The linear GVAR model

Ingredients: N countries, a vector $x_{i,t}$ of macroeconomic time series, a link matrix W_i, $x^*_{i,t}$, to approximate global factors

1. For each country i, specify a VARX*(1,1) model:

$$x_{i,t} = \underbrace{c_{i0} + c_{i1}t}_{\text{deterministics}} + \underbrace{\Phi_{i1}x_{i,t-1}}_{\text{domestic}} + \underbrace{\Lambda_{i0}x^*_{i,t} + \Lambda_{i1}x^*_{i,t-1}}_{\text{international}} + \varepsilon_{i,t}$$

where $x^*_{i,t} := \sum_{j=0}^{N} \omega_{ij}x_{j,t}$ and $\varepsilon_{i,t} \sim \mathcal{N}(0, \Sigma_i)$
Second Layer: Stacking the Single Models

- VARX(1,1): $x_{it} = \Phi_{i1}x_{i,t-1} + \Lambda_{i0}x_{it}^* + \Lambda_{i1}x_{i,t-1}^* + \varepsilon_{it}$
- Use link matrix \mathcal{W}_i and selection matrix S_i

$$S_i x_t = \Phi_{i1} S_i x_{t-1} + \Lambda_{i0} \mathcal{W}_i x_t + \Lambda_{i1} \mathcal{W}_i x_{t-1} + \varepsilon_{it}$$

$$\underbrace{(S_i - \Lambda_{i0} \mathcal{W}_i)}_{G_i} x_t = \underbrace{(\Phi_{i1} S_i + \Lambda_{i1} \mathcal{W}_i)}_{H_i} x_{t-1} + \varepsilon_{it}$$

$$G_i x_t = H_i x_{t-1} + \varepsilon_{it}$$

- Stack all country-specific models

$$G x_t = H x_{t-1} + e_t$$

- The GVAR model

$$x_t = \underbrace{F x_{t-1}}_{F= G^{-1} H} + \underbrace{\tilde{e}_t}_{G^{-1} e_t}$$
From linear to TVP GVARs: Road map

The TVP-SV-GVAR model with a Cholesky structure
- Estimate structural / Cholesky form of the model (Lopes et al., 2013)
- equation-by-equation estimation, exploits parallel computing
 ⇒ allows estimation of medium- to large scale TVP-SV-VARs

Bayesian estimation
- Specify law of motions and priors for all parameters

Identification
1. Use a recursive structure to identify monetary policy (MP) shocks in the USA and in three regions.
2. Use generalized impulse response functions (GIRFs) to calculate further regional shocks.
The observation equation of the TVP-GVAR

For country model i we specify

$$A_{i0,t}x_{i,t} = \sum_{p=1}^{P} B_{ip,t} x_{i,t-p} + \sum_{q=0}^{Q} \Lambda_{iq,t} x_{i,t-q}^* + \nu_{it}, \quad (1)$$

- $A_{i0,t}$ is a $k_i \times k_i$ matrix of structural coefficients
- $B_{ip,t}$ ($p = 1, \ldots, P$) is a $k_i \times k_i$ matrix of coefficients associated with the lagged endogenous variables
- $\Lambda_{iq,t}$ ($q = 0, \ldots, Q$) denotes a $k_i \times k_i^*$ dimensional coefficient matrix corresponding to the k_i^* weakly exogenous variables in x_{it}^*
- $\nu_{it} \sim \mathcal{N}(0, D_t)$ is a heteroskedastic vector error term with $D_t = \text{diag}(\lambda_{i0,t}, \ldots, \lambda_{ik_i,t})$
The state equations of the TVP-SV-VAR

For country model i we have

$$a_{i,t} = a_{i,t-1} + \gamma_{i,t}$$

$$\begin{align*}
\text{vec}(\Psi_{i,t}) &= \text{vec}(\Psi_{i,t-1}) + \eta_{i,t} \\
h_{il,t} &= \mu_{il} + \rho_{il}(h_{il,t-1} - \mu_{il}) + \nu_{il,t}
\end{align*}$$

$$\gamma_{i,t} \sim \mathcal{N}(0, V_i) \quad (2)$$

$$\eta_{i,t} \sim \mathcal{N}(0, S_i) \quad (3)$$

$$\nu_{il,t} \sim \mathcal{N}(0, \varsigma_{il}^2) \quad (4)$$

with a_t collecting the free elements of A_t, and $\Psi_{i,t}$ collecting the elements of $B_{ip,t}$ and $\Lambda_{iq,t}$. Finally $h_{il,t} = \log(\lambda_{il,t})$ denotes the log-volatility of the lth equation in country model i.
Bayesian inference: Prior setup

Priors on the initial state:

\[
\begin{align*}
\mathbf{a}_{i0} & \sim \mathcal{N}(\mathbf{0}, \mathbf{V}_{ai}) \\
\text{vec}(\mathbf{\Psi}_{i0}) & \sim \mathcal{N}(\mathbf{0}, \mathbf{V}_{\Psi_i})
\end{align*}
\]

with \(\mathbf{V}_{ai} \) and \(\mathbf{V}_{\Psi_i} \) diagonal prior variance-covariance matrices.

Priors on the variances of the state equations, \(\mathbf{V}_i \) and \(\mathbf{S}_i \):

\[
\begin{align*}
\nu_{i,rr}^2 & \sim \mathcal{G} \left(\frac{1}{2}, \frac{1}{2B_{\nu}} \right), \quad r = 1, \ldots, l_i \\
\sigma_{i,jj}^2 & \sim \mathcal{G} \left(\frac{1}{2}, \frac{1}{2B_s} \right), \quad j = 1, \ldots, K_i
\end{align*}
\]

where \(B_s \) and \(B_{\nu} \) denote scalars that control the tightness of the prior and \(l_i = k_i(k_i - 1)/2 \).
Bayesian inference: Prior setup II

Prior for the volatility equation:

Normal prior on μ_{il},

$$\mu_{il} \sim \mathcal{N}(\mu_i, V_{\mu_i}).$$

Beta prior on the persistence parameter ρ,

$$\frac{\rho_{il} + 1}{2} \sim \text{Beta}(e_0, f_0),$$

Gamma prior on ς_{il},

$$\varsigma_{il} \sim \mathcal{G}(0.5, 1/(2B_\sigma)).$$
Bayesian inference: Estimation of country model \(i \)

\[
\text{MCMC}=\text{function}(X)\{
\]

For equation \(l = 1, \ldots, k_i \)
\{

Initialize \(V_{il}, S_{il} \) and \(h_{il} = (h_{il,0}, \ldots, h_{il,T})' \)

For irep =1,...,ntot{

1 \ Sample \(a_{il}^T = (a_{il,0}, \ldots, a_{il,T})' \) and \(\text{vec}(\Psi_{il})^T = (\text{vec}(\Psi_{il,0}), \ldots, \text{vec}(\Psi_{il,T}))' \) using the Carter & Kohn (1994) algorithm

2 \ Sample the variances of Eqs. (2) and (3) using Gibbs steps by noting that the conditional posteriors are of generalized inverse Gaussian form

3 \ Sample \(h_{il}^T = (h_{il,1}, \ldots, h_{il,T})' \) through the algorithm put forth in Kastner & Fruehwirth-Schnatter (2014)

\}

Collect the parameter draws for all \(k_i \) equations and construct the TVP-SV-VAR

\}

Note that the first for-loop can easily be parallelized!
Data & country coverage

Country coverage (36 countries)

Western Europe: AT, BE, DE, ES, FI, FR, GR, IT, NL, PT, DK, GB, CH, NO, SE.

Other developed economies: AU, CA, JP, NZ, US.

Emerging Asia: CN, IN, ID, MY, KR, PH, SG, TH.

Latin America: AR, BR, CL, MX, PE.

Mid-East and Africa: TR, SA, ZA.

Data (1979Q4-2013Q4)

Δy_{it}: Real GDP growth.

Δp_{it}: CPI inflation.

Δe_{it}: Change in the real exchange rate vis-a-vis the US dollar.

i_{it}: Short-term interest rate.

s_{it}: Term spread.

$\Delta p_{oil_{t}}$: Change in oil price, endogenous in US model.
Identification

- First, we assess US and regional monetary policy shocks by assuming the following ordering (Christiano et al., 1996, 1999):

 \[x_{0t} = (\Delta poil_t, \Delta y_{0t}, \Delta p_{0t}, i_{0t}, s_{0t})' \]

 This is the same ordering as used in the estimation stage of the local TVP-SV models.

- Second we assess the US response to additional regional shocks using generalized impulse response functions:
 1. A positive shock to inflation by around one percentage point, on average, in Western Europe, Asia and Latin America,
 2. A negative output growth shock by around one percentage point, on average, in Western Europe, Asia and Latin America,
 3. A one percent real appreciation shock of the US dollar against currencies in Western Europe, Asia and Latin America.
RESULTS I: International responses to +100 bp US MP shock
Real GDP growth (cumulative response)

$t = 1$

$t = 8$
Inflation (cumulative response)

$t = 1$

$t = 8$
Short-term interest rates

$t = 1$

$t = 8$
International response of real exchange rate

+ denotes real appreciation of US dollar, cumulative response

\[t = 1 \]

\[t = 8 \]
Remarks

A US monetary tightening leads to . . .

1. A decrease international output (even after eight quarters)
2. A decrease in prices in the short-term (exception Latin America)
3. An increase of international interest rates.
4. A weakening of most currencies against the US dollar.

We also find

- Cross-country heterogeneity of spillovers, especially among emerging economies.
- Considerable time variation in international spillovers.
RESULTS II: Responses of US interest rates to regional shocks
US interest rate response to regional MP shocks

Western Europe

Emerging Asia

Latin America

$t = 1$

$t = 8$
US interest rate response to other regional shocks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low<sub>0.25</sub></td>
<td>Median</td>
<td>High<sub>0.75</sub></td>
</tr>
<tr>
<td>Inflation in Western Europe</td>
<td>$t = 1$</td>
<td>12.9</td>
<td>43.9</td>
</tr>
<tr>
<td>Real GDP growth in Western Europe</td>
<td>$t = 1$</td>
<td>-165.8</td>
<td>-122.0</td>
</tr>
<tr>
<td>Exchange rate in Western Europe</td>
<td>$t = 1$</td>
<td>-0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Inflation in Asia</td>
<td>$t = 1$</td>
<td>20.0</td>
<td>42.1</td>
</tr>
<tr>
<td>Real GDP growth in Asia</td>
<td>$t = 1$</td>
<td>-120.6</td>
<td>-87.9</td>
</tr>
<tr>
<td>Exchange rate in Asia</td>
<td>$t = 1$</td>
<td>-10.5</td>
<td>-5.0</td>
</tr>
<tr>
<td>Inflation in Latin America</td>
<td>$t = 1$</td>
<td>-9.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Real GDP growth in Latin America</td>
<td>$t = 1$</td>
<td>-60.1</td>
<td>-44.5</td>
</tr>
<tr>
<td>Exchange rate in Latin America</td>
<td>$t = 1$</td>
<td>-2.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Notes: The table presents the posterior distribution of generalized impulse response functions (GIRFs) associated with a regional rise in inflation, a reduction of regional real GDP growth and an appreciation of the US dollar against regional currency baskets. Responses are based on 1,500 posterior draws from a total chain of 30,000 iterations and in basis points. Responses for which credible sets do not include a zero value in bold.
Conclusions I

- We developed a new framework for global macroeconomic analysis (TVP-SV-GVAR) which allows for time-varying parameters and residual variances.

1. A US monetary policy tightening triggers significant spillovers:
 - Global real activity contracts and rather persistently.
 - International prices fall immediately, but adjust quickly.
 - Global nominal interest rates follow the US rate hike.
 - The US dollar tends to appreciate in real terms.

- Cross-country heterogeneity: countries highly integrated with USA (e.g., Canada), emerging economies (e.g., Brazil, Chile, India) show strongest response.

- Variation over time: Strength of output and interest rate spillovers increased from the 1980s and peaked in 2008; afterwards extent of spillovers declined.
Conclusions II

2 US interest rates respond to foreign regional shocks:

- In the medium term, **US short-term rates decrease** when either foreign monetary policy is tightened or foreign real GDP growth decreases.
- Domestic rates decreased to boost economic growth in the USA ⇒ **US rates do not follow international rates**
- For other shocks, less compelling evidence of US interest rate reaction.
- Exception: shocks from Asia including China. Here, **US rates also respond to an exchange rate shock** in the short-run and to **an inflation shock** in the medium-term.
Selected references I

How Has the Monetary Transmission Mechanism Evolved Over Time?
Handbook of Monetary Economics.

On Gibbs sampling for state space models
Biometrika 81(3),541553.

The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds

Monetary policy shocks: What have we learned and to what end?
Handbook of Macroeconomics 1, 65148

Forecasting with global vector autoregressive models: a Bayesian approach
Journal of Applied Econometrics, forthcoming
Selected references II

The international transmission of US shocks - Evidence from Bayesian global vector autoregressions.
European Economic Review 81, pp. 167-188

Data augmentation and dynamic linear models

Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models.
Computational Statistics & Data Analysis 76, 408423.

Time varying structural vector autoregressions and monetary policy

Were There Regime Switches in U.S. Monetary Policy?
Backup slides
Each country is modeled as a country-specific VAR augmented with the foreign variables (VARX)

\[x_{i,t} = c_{i0} + c_{i1} t + \Phi_{i1} x_{i,t-1} + \Lambda_{i0} x^*_{i,t} + \Lambda_{i1} x^*_{i,t-1} + \varepsilon_{i,t} \]

where \(x^*_{i,t} := \sum_{j=0}^{N} \omega_{ij} x_{j,t} \) and \(\varepsilon_{i,t} \sim \mathcal{N}(0, \Sigma_i) \)
Second Layer: Stacking the Single Models

- After the country-by-country estimation of the VECMX we can proceed to the second step of the GVAR modelling strategy

 1. Recover the parameters of the VARX models
 2. Combine the VARX into a global model

- The resulting model will have the form of a standard VAR where all variables will be "endogenous"

- This is a purely mechanical step: **no estimation is involved!**
Stochastic volatility over time

Real GDP growth

Inflation
Stochastic volatility over time

Short-term interest rate

Real exchange rate