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Motivation
• Forecasting volatility and jumps plays a crucial role in 

many financial applications:
– Option pricing, VaR calculation, optimal portfolio 

construction, quantitative trading, etc. 

• The main problem is that volatility and jumps are 
unobservable

• There are currently two classes of models for 
volatility and jumps estimation and modelling:
a) Parametric approach of Stochastic-Volatility Jump-Diffusion 

models (SVJD) models – estimate volatility and jumps as 
latent state variables with computationally intensive estimation 
methods such as MCMC.

b) Non-parametric approach using power-variation estimators
– utilize high-frequency data and the asymptotic theory of 
power variations (Realized Variance, etc.) to construct non-
parametric estimates of volatility and jumps



Goal of our research
• Our goal is to develop tools that would enable the 

estimation and application of more realistic SVJD models 

for the modelling of asset price behavior

• The areas of study include:

1. Incorporation of additional effects into the SVJD models, 

such as jump clustering - topic of Illustration 1, comes from 

Fičura and Witzany (2015a), available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2551807

2. Estimation of SVJD models on intraday time series, that 

would account for the intraday seasonality of volatility and 

jump intensity – topic of Illustration 2, comes from Fičura

and Witzany (2015b), available at:
http://amse2015.cz/doc/Ficura_Witzany.pdf

3. Utilization of high-frequency power-variation estimators for 

the estimation of daily SVJD models – Illustration 3, 

comes from Fičura and Witzany (2015c), available at:
https://msed.vse.cz/msed_2015/article/170-Ficura-Milan-paper.pdf

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2551807
http://amse2015.cz/doc/Ficura_Witzany.pdf
https://msed.vse.cz/msed_2015/article/170-Ficura-Milan-paper.pdf
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The general price process

• Let us assume that the logarithmic price of an asset 

follows a stochastic process defined by the following SDE:

• is the logarithmic price at time t

• is the instantaneous drift rate

• is the instantaneous volatility

• is the Wiener process

• is a process determining the size of the jumps

• is a process determining the occurrence of jumps

• may by a process determining the jump intensity

• We can directly observe only         at discrete points in time

• All of the other processes are unobservable



Stochastic volatility 
• Empirical studies show that volatility is time-varying

• i.e. the term          is following its own stochastic process

• A widely used model for         is the log-variance model

• In this model the                       follows a mean-reverting
Ornstein-Uhlenbeck process:

• determines the strength of the mean reversion

• determines the long-term volatility, and

• determines the volatility of volatility

• is a Wiener process that may be correlated with

• After discretization the O-U process becomes AR(1) 
process



Self-Exciting jumps
• Empirical studies indicate also some form of jump 

clustering

• i.e. the intensity of jumps is time varying

• We can model the clustering using the self-exciting 
Hawkes process (with exponential decay function) 
for the term

• The jump intensity is then 
governed by the following process:

• By solving the equation we can get the value of



Daily returns and variablity

• Assuming the general process for log-price evolution:

• Daily returns can then be expressed:

• The variability of the price process can be expressed with 

its quadratic variation in the form:

• Which is a sum a of integrated variance and jump 

volatility:
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Bayesian estimation methods

• First we have to define the assumed stochastic 
processes for the logarithmic price, stochastic 
volatility, jumps, etc.

• Bayesian methods can then be used to estimate the 
process parameters and the values of the latent 
state variables

• i.e. the values of the latent stochastic volatilities, 
jump occurrences, jumps sizes, etc. for every 
single day in the time series

• Commonly used methods are:
– Markov Chain Monte Carlo (MCMC)

– Particle filters (PF)



Markov Chain Monte Carlo
• MCMC algorithm allows us to sample from multivariate 

distributions by constructing a Markov chain

• It can be used to estimate model parameters and latent 
state variables by approximating their joint posterior 
density

• Many versions of the algorithm exist:

– Gibbs sampler – Uses conditional densities to estimate joint 
density

– Metropolis-Hastings algorithm – Uses rejection sampling

• Random-walk – Uses only the likelihood ratio

• Multiple-step – Similar to Random-Walk but with faster 
convergence

• Independence sampling – Using approximate densities

• The methods can be combined, using different methods 
for different variables
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Illustration 1 - The SVJD model

• Model described in Fičura and Witzany (2015a)

• We define our jump-diffusion model with stochastic 

volatility and self exciting jumps as follows:

• Log-ret:

• Stoch.vol:

• Intenzity:



Euler discretization

• We use the Euler discretization with the assumption 
that at most 1 jump can happen during one day

• The discrete model has the following equations:

• 9 parameters are being estimated: 

• And 3 series of latent state variables: V,J,Q



MCMC algorithm
• We estimate the model parameters and the latent state 

variables using MCMC algorithm

• The MCMC algorithm combines:

– Gibbs Sampler (                               ) 

– Accept-Reject Gibbs Sampler (V)

– Random Walk Metropolis-Hastings  ( )

• The estimation algorithm was firstly tested on simulated 

time series with mixed results in its ability to identify 

jumps and their clustering

• Especially if     in the simulated data was not high 

enough, the jumps mixed with the diffusion volatility and 

the estimated     was much lower then in the simulations

• We further show only the results for the real data 

(EUR/USD time series)



Convergence of Beta



Convergence of Gamma



Convergence of ThetaJ



Realized vs. estimated variance



Bayesian jump probabilities



Jump prob. (since 2012)



Can the model identify jumps?

• The performance of the model in this regard does not 
look very good – too few jumps

• Also the self-exciting property does not seem to be 
present (the mode of betaJ and gammaJ distributions is 
close to zero)

• The jumps identified using the bayesian model were 
further compared with the ones identified using the 
shrinkage estimator (Z-Statistics):
A. Mean probabilities of jumps for every single day were 

calculated using their bayesian distributions

B. The daily probabilities of jumps were calculated from the 
shrinkage estimator using the standard normal CDF

• Spearman rank correlation coefficient was calculated 
between the two variables with value of only 0,0171

• i.e. the probabilities of jumps estimated using the two 
different methods do not seem to be rank correlated



Ilustration 2 – Intraday SVJD

• Extended model was used in Fičura and Witzany
(2015b), to model volatility and jumps based on intraday 
price returns (4-hour returns specifically)

• It was necessary to incorporate intraday seasonality of 
the volatility and jump intensity into the model

• The model contains:
– 9 parameters related to the stochastic processes

– 10 parameters associated with the seasonality effects: sj and 
λS,j with j going from 1 to 5 (as one in the six seasons is 
chosen as benchmark with parameter value equal to one)

– Three vectors of latent state variables: V, J and Q

• The estimation is performed by using a MCMC 
algorithm combining Gibbs sampler and 
Metropolis-Hastings algorithm



Full intraday SVJD model:
• The logarithmic returns are given as:

• The stochastic volatility is given as:

• The jump intensity is given as:     tλ==tQPr 1
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Latent state variable estimates
• Posterior mean estimates of the stochastic variances 

and jump occurrences:

• Range of tests confirmed that the estimates of 
volatility and jumps based on the intraday SVJD 
model correspond more closely to the non-parametric 
estimates of these quantities then when a daily SVJD 
model is used



Intraday seasonality adjustments

• The model identified the following intraday 

seasonality patterns of volatility & jump intensity



Posterior marginal distribution of 

betaJ and gammaJ

• The estimated posterior marginal bivariate 

distribution of betaJ and gammaJ exhibited 

bimodality
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Particle filters
• Particle filters use weighted set of particles and 

Bayesian recursion equations in order to estimate the 
posterior density over a set of latent state-space 
variables

• Differences compared to MCMC:

• With MCMC we were estimating 𝑝 𝑉𝑡 ℱ𝑇
• Where ℱ𝑇 denotes the information over the whole history 

of the time series

• With particle filters we are estimating 𝑝 𝑉𝑡 ℱ𝑡
• Where ℱ𝑡 denotes the observable information until time t

• After estimating 𝑝 𝑉𝑡 ℱ𝑡 , we can make forecasts of 
𝑝 𝑉𝑡+1 ℱ𝑡 , 𝑝 𝑉𝑡+2 ℱ𝑡 , etc. via simulations

• The models can thus be used for volatility forecasting, 
VaR estimation, Option pricing, etc.



Illustration 3 – SVJD-RV-Z
• High-frequency power-variation estimators can be utilized 

to get additional information for the bayesian estimation 
of the SVJD models (Fičura and Witzany, 2015c)

• SVJD-RV – Model uses realized variance together with 
daily returns in order to estimate the stochastic volatilities

• SVJD-RV-Z – Model uses also the Z-Estimator of jumps 
in order to more accurately estimate jumps in the time 
series

• The SVJD-RV-Z model is constructed so that it can 
distinguish between small jumps (visible only on the 
intraday frequency) and large jumps (influencing the 
returns on the daily frequency)

• Models were applied to the EUR/USD exchange rate 
evolution in the period between 1.11.1999 and 
10.10.2014 containing a total of 3 884 trading days



The SVJD-RV-Z model

• The logarithmic returns are given as:

• The stochastic volatility is given as:

• The jump intensity is given as:

• The realized variance is given as:

• The Z statistics is given as:
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Jump estimates - 4 models
• Estimated jumps under SVJD, SVJD-RV, SVJD-RV-

Z (with MCMC) and with the Z-Statistics only



Marginal density of GammaJ and BetaJ

(for SVJD-RV and SVJR-RV-Z)



Particle Filter forecasts
• One period ahead forecasts of the SVJD-RV-Z 

model constructed by using the SIR particle filter



Preliminary results – Out-Sample 

forecasts

• The out-of-sample R-Squared values are comparable with the 
HAR model, which is commonly used as benchmark.

• Models estimated with MCMC on the first 1000 periods and 
applied via particle filters to the rest of the data

• Further research:
– We will add jumps in the volatility process

– We will add long-memory to the volatility process

– Auxiliary particle filter instead of SIR filter

– Leverage effect in order to model stock market volatility

– Compare with more advanced modifications of HAR

Horizon SV SV-RV SVJD SVJD-RV SVJD-RV-Z SVJDH SVJDH-RV SVJDH-RV-Z HAR

1 Day 0.3982 0.4577 0.3867 0.4593 0.4648 0.3923 0.4621 0.4652 0.4746

5 Day 0.5556 0.6523 0.5633 0.6564 0.6539 0.5598 0.6562 0.6628 0.6551

20 Day 0.5825 0.6969 0.5902 0.6986 0.7005 0.5795 0.6955 0.7029 0.7064



Conclusions
• The estimation of SVJD models on intraday returns 

as well as the utilization of intraday power-variation 
estimators both lead to more realistic jump estimates

• These estimates include significantly more 
pronounced self-exciting effects of the jumps

• Out-Sample analysis of the models shows that they 
posses predictive power similar to the HAR model

• As our currently used SVJD models are in principle 
short-memory, while HAR is a long-memory model, it 
is expected that the incorporation of long-memory 
features into the SVJD models may increase the 
predictive power further

• Similarly the inclusion of volatility jumps and other 
effects may prove to be useful



Thank you for your 

attention
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