

Using MCMC and particle filters to forecast stochastic volatility and jumps in financial time series

Ing. Milan Fičura

DYME (Dynamical Methods in Economics)

University of Economics, Prague 15.6.2016

Outline of the presentation:

- 1) Motivation
- 2) General asset price process
- 3) MCMC estimation method
- 4) Empirical application of MCMC
- 5) Particle filters
- 6) Calculating forecasts via particle filters

Motivation

- Forecasting volatility and jumps plays a crucial role in many financial applications:
 - Option pricing, VaR calculation, optimal portfolio construction, quantitative trading, etc.
- The main problem is that volatility and jumps are unobservable
- There are currently two classes of models for volatility and jumps estimation and modelling:
 - a) Parametric approach of Stochastic-Volatility Jump-Diffusion models (SVJD) models estimate volatility and jumps as latent state variables with computationally intensive estimation methods such as MCMC.
 - Non-parametric approach using power-variation estimators

 utilize high-frequency data and the asymptotic theory of power variations (Realized Variance, etc.) to construct non-parametric estimates of volatility and jumps

Goal of our research

- Our goal is to develop tools that would enable the estimation and application of more realistic SVJD models for the modelling of asset price behavior
- The areas of study include:
 - Incorporation of additional effects into the SVJD models, such as jump clustering - topic of **Illustration 1**, comes from Fičura and Witzany (2015a), available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2551807
 - Estimation of SVJD models on intraday time series, that would account for the intraday seasonality of volatility and jump intensity – topic of **Illustration 2**, comes from Fičura and Witzany (2015b), available at: http://amse2015.cz/doc/Ficura_Witzany.pdf
 - Utilization of high-frequency power-variation estimators for the estimation of daily SVJD models – Illustration 3, comes from Fičura and Witzany (2015c), available at: https://msed.vse.cz/msed_2015/article/170-Ficura-Milan-paper.pdf

Outline of the presentation:

- 1) Motivation
- 2) General asset price process
- 3) MCMC estimation method
- 4) Empirical application of MCMC
- 5) Particle filters
- 6) Calculating forecasts via particle filters

The general price process

 Let us assume that the logarithmic price of an asset follows a stochastic process defined by the following SDE:

$$dp(t) = \mu(t)dt + \sigma(t)dW(t) + j(t)dq(t)$$

- p(t) is the logarithmic price at time t
- $\mu(t)$ is the instantaneous drift rate
- $\sigma(t)$ is the instantaneous volatility
- W(t) is the Wiener process
- j(t) is a process determining the size of the jumps
- q(t) is a process determining the occurrence of jumps
- $\lambda(t)$ may by a process determining the jump intensity
- We can directly observe only p(t) at discrete points in time
- All of the other processes are unobservable

Stochastic volatility

- Empirical studies show that volatility is time-varying
- i.e. the term $\sigma(t)$ is following its own stochastic process
- A widely used model for $\sigma(t)$ is the log-variance model
- In this model the $h(t) = \ln(\sigma_t^2)$ follows a mean-reverting Ornstein-Uhlenbeck process:

$$dh(t) = \kappa [\theta - h(t)]dt + \xi dW_V(t)$$

- κ determines the strength of the mean reversion
- θ determines the long-term volatility, and
- ξ determines the volatility of volatility
- $W_V(t)$ is a Wiener process that may be correlated with W(t)
- After discretization the O-U process becomes AR(1) process

Self-Exciting jumps

- Empirical studies indicate also some form of jump clustering
- i.e. the intensity of jumps is time varying dq(t)
- We can model the clustering using the self-exciting Hawkes process (with exponential decay function) for the term
- The **jump intensity** $Pr[dq(t) = 1] = \lambda(t)dt$ is then governed by the following process:

$$d\lambda(t) = \kappa[\theta - \lambda(t)]dt + \eta dq(t)$$

• By solving the equation we can get the value of $\lambda(t)$

$$\lambda(t) = \theta + \int_{-\infty}^{t} \eta e^{-\kappa(t-s)} dq(s) = \theta + \sum_{dq(s)=1, s \le t} \eta e^{-\kappa(t-s)}$$

Daily returns and variablity

Assuming the general process for log-price evolution:

$$dp(t) = \mu(t)dt + \sigma(t)dW(t) + j(t)dq(t)$$

• **Daily returns** r(t) = p(t) - p(t-1) can then be expressed:

$$r(t) = \int_{t-1}^{t} \mu(\tau)d\tau + \int_{t-1}^{t} \sigma(\tau)dW(\tau) + \sum_{t-1 \le \tau < t} \kappa(\tau)$$

 The variability of the price process can be expressed with its quadratic variation in the form:

$$QV(t) = \int_{t-1}^{t} \sigma^2(s) ds + \sum_{t-1 \le s < t} \kappa^2(s)$$

• Which is a sum a of integrated variance and jump volatility: QV(t) = IV(t) + IV(t)

Outline of the presentation:

- 1) Motivation
- 2) General asset price process
- 3) MCMC estimation method
- 4) Empirical application of MCMC
- 5) Particle filters
- 6) Calculating forecasts via particle filters

Bayesian estimation methods

- First we have to define the assumed stochastic processes for the logarithmic price, stochastic volatility, jumps, etc.
- Bayesian methods can then be used to estimate the process parameters and the values of the latent state variables
- i.e. the values of the latent stochastic volatilities, jump occurrences, jumps sizes, etc. for every single day in the time series
- Commonly used methods are:
 - Markov Chain Monte Carlo (MCMC)
 - Particle filters (PF)

Markov Chain Monte Carlo

- MCMC algorithm allows us to sample from multivariate distributions by constructing a Markov chain
- It can be used to estimate model parameters and latent state variables by approximating their joint posterior density
- Many versions of the algorithm exist:
 - Gibbs sampler Uses conditional densities to estimate joint density
 - Metropolis-Hastings algorithm Uses rejection sampling
 - Random-walk Uses only the likelihood ratio
 - Multiple-step Similar to Random-Walk but with faster convergence
 - Independence sampling Using approximate densities
- The methods can be combined, using different methods for different variables

Outline of the presentation:

- 1) Motivation
- 2) General asset price process
- 3) MCMC estimation method
- 4) Empirical application of MCMC
- 5) Particle filters
- 6) Calculating forecasts via particle filters

Illustration 1 - The SVJD model

- Model described in Fičura and Witzany (2015a)
- We define our jump-diffusion model with stochastic volatility and self exciting jumps as follows:
- Log-ret: $dp(t) = \mu dt + \sigma(t) dW(t) + j(t) dq(t)$ $j(t) \sim N(\mu_I, \sigma_I)$
- Stoch.vol: $dh(t) = \kappa [\theta h(t)]dt + \xi dW_V(t)$ $h(t) = \ln(\sigma_t^2)$
- Intenzity: $d\lambda(t) = \kappa_J [\theta_J \lambda(t)] dt + \eta_J dq(t)$ $Pr[dq(t) = 1] = \lambda(t) dt$

Euler discretization

- We use the Euler discretization with the assumption that at most 1 jump can happen during one day
- The discrete model has the following equations:

$$r(t) = \mu + \sigma(t)\varepsilon(t) + J(t)Q(t) \qquad V(t) = \sigma_t^2$$

$$h(t) = \alpha + \beta h(t-1) + \gamma \varepsilon_V(t) \qquad h(t) = \ln(V(t))$$

$$\lambda(t) = \alpha_J + \beta_J \lambda(t-1) + \gamma_J Q(t-1) \qquad Q(t) \sim \text{Bern}(\lambda(t))$$

$$\alpha = (1-\beta)\theta \qquad \alpha_J = (1-\beta_J)\theta_J \qquad J(t) \sim N(\mu_J, \sigma_J)$$

$$\varepsilon(t) \sim N(0,1) \qquad \varepsilon_V(t) \sim N(0,1)$$

- 9 parameters are being estimated: μ , α , β , γ , θ_J , β_J , γ_J , μ_J , σ_J
- And 3 series of latent state variables: V,J,Q

MCMC algorithm

- We estimate the model parameters and the latent state variables using MCMC algorithm
- The MCMC algorithm combines:
 - Gibbs Sampler $(\mu, \sigma, \mu_j, \sigma_j, \alpha, \beta, \gamma, \mathbf{Q}, \mathbf{J})$
 - Accept-Reject Gibbs Sampler (V)
 - Random Walk Metropolis-Hastings $(\theta_I, \beta_I, \gamma_I)$
- The estimation algorithm was firstly tested on simulated time series with mixed results in its ability to identify jumps and their clustering
- Especially if σ_i in the simulated data was not high enough, the jumps mixed with the diffusion volatility and the estimated θ_i was much lower then in the simulations
- We further show only the results for the real data (EUR/USD time series)

Convergence of Beta

Convergence of Gamma

Convergence of ThetaJ

Realized vs. estimated variance

Bayesian jump probabilities

Jump prob. (since 2012)

Can the model identify jumps?

- The performance of the model in this regard does not look very good – too few jumps
- Also the self-exciting property does not seem to be present (the mode of betaJ and gammaJ distributions is close to zero)
- The jumps identified using the bayesian model were further compared with the ones identified using the shrinkage estimator (Z-Statistics):
 - A. Mean probabilities of jumps for every single day were calculated using their bayesian distributions
 - B. The daily **probabilities of jumps** were calculated from the **shrinkage estimator** using the standard normal CDF
- Spearman rank correlation coefficient was calculated between the two variables with value of only <u>0,0171</u>
- i.e. the probabilities of jumps estimated using the two different methods do not seem to be rank correlated

Illustration 2 – Intraday SVJD

- Extended model was used in Fičura and Witzany (2015b), to model volatility and jumps based on intraday price returns (4-hour returns specifically)
- It was necessary to incorporate intraday seasonality of the volatility and jump intensity into the model
- The model contains:
 - 9 parameters related to the stochastic processes
 - 10 parameters associated with the seasonality effects: s_j and λs_{,j} with j going from 1 to 5 (as one in the six seasons is chosen as benchmark with parameter value equal to one)
 - Three vectors of latent state variables: V, J and Q
- The estimation is performed by using a MCMC algorithm combining Gibbs sampler and Metropolis-Hastings algorithm

Full intraday SVJD model:

• The logarithmic returns are given as:

$$r(t) = \mu + \sigma(t)\varepsilon(t) + J(t)Q(t)$$

• The stochastic volatility is given as:

$$\sigma(t) = v(t)s(t)$$

$$h(t) = \alpha + \beta h(t-1) + \gamma \varepsilon_V(t)$$

$$s(t) = \sum_{j=1}^{6} s_j d_j(t)$$

The jump intensity is given as:

$$\lambda(t) = \lambda_H(t)\lambda_S(t)$$

$$\lambda_H(t) = \alpha_J + \beta_J \lambda_H(t-1) + \gamma_J Q(t-1)$$

$$\lambda_{S}(t) = \sum_{j=1}^{6} \lambda_{S,j} d_{j}(t)$$

$$Q(t) \sim Bern[\lambda(t)]$$

$$J(t) \sim N(\mu_J, \sigma_J)$$

$$\varepsilon(t) \sim N(0,1)$$

$$h(t) = \log(V(t))$$

$$V(t) = v^2(t)$$

$$\varepsilon_V(t) \sim N(0,1)$$

$$Pr[Q(t)=1]=\lambda(t)$$

Latent state variable estimates

 Posterior mean estimates of the stochastic variances and jump occurrences:

 Range of tests confirmed that the estimates of volatility and jumps based on the intraday SVJD model correspond more closely to the non-parametric estimates of these quantities then when a daily SVJD model is used

Intraday seasonality adjustments

 The model identified the following intraday seasonality patterns of volatility & jump intensity

Posterior marginal distribution of betaJ and gammaJ

 The estimated posterior marginal bivariate distribution of betaJ and gammaJ exhibited bimodality

Outline of the presentation:

- 1) Motivation
- 2) General asset price proces
- 3) MCMC estimation method
- 4) Empirical application of MCMC
- 5) Particle filters
- 6) Calculating forecasts via particle filters

Particle filters

- Particle filters use weighted set of particles and Bayesian recursion equations in order to estimate the posterior density over a set of latent state-space variables
- Differences compared to MCMC:
- With MCMC we were estimating $p(V_t|\mathcal{F}_T)$
- Where \mathcal{F}_T denotes the information over the whole history of the time series
- With particle filters we are estimating $p(V_t|\mathcal{F}_t)$
- Where \mathcal{F}_t denotes the observable information until time t
- After estimating $p(V_t|\mathcal{F}_t)$, we can make forecasts of $p(V_{t+1}|\mathcal{F}_t)$, $p(V_{t+2}|\mathcal{F}_t)$, etc. via simulations
- The models can thus be used for volatility forecasting, VaR estimation, Option pricing, etc.

Illustration 3 – SVJD-RV-Z

- High-frequency power-variation estimators can be utilized to get additional information for the bayesian estimation of the SVJD models (Fičura and Witzany, 2015c)
- SVJD-RV Model uses realized variance together with daily returns in order to estimate the stochastic volatilities
- SVJD-RV-Z Model uses also the Z-Estimator of jumps in order to more accurately estimate jumps in the time series
- The SVJD-RV-Z model is constructed so that it can distinguish between small jumps (visible only on the intraday frequency) and large jumps (influencing the returns on the daily frequency)
- Models were applied to the EUR/USD exchange rate evolution in the period between 1.11.1999 and 10.10.2014 containing a total of 3 884 trading days

The SVJD-RV-Z model

The logarithmic returns are given as:

$$r(t) = \mu + \sigma(t)\varepsilon(t) + J(t)Q(t)$$

The stochastic volatility is given as:

$$h(t) = \alpha + \beta h(t-1) + \gamma \varepsilon_V(t)$$

The jump intensity is given as:

$$\lambda(t) = \alpha_J + \beta_J \lambda(t-1) + \gamma_J Q(t-1)$$

The realized variance is given as:

$$\log(RV(t) - J^{2}(t)Q(t)) = h(t) + \varepsilon_{RV}(t)$$

• The Z statistics is given as:

$$Z(t) = \mu_Z + \xi_Z Q(t) + \varepsilon_Z$$

$$\varepsilon(t) \sim N(0,1)$$

$$J(t) \sim N(\mu_J, \sigma_J)$$

$$Q(t) \sim Bern[\lambda(t)]$$

$$h(t) = \log(V(t))$$

$$V(t) = \sigma^2(t)$$

$$\varepsilon_V(t) \sim N(0,1)$$

$$Pr[Q(t)=1]=\lambda(t)$$

$$\varepsilon_{RV}(t) \sim N(0, \sigma_{RV})$$

$$\varepsilon_z \sim N(0, \sigma_z)$$

Jump estimates - 4 models

 Estimated jumps under SVJD, SVJD-RV, SVJD-RV-Z (with MCMC) and with the Z-Statistics only

Marginal density of GammaJ and BetaJ (for SVJD-RV and SVJR-RV-Z)

Particle Filter forecasts

 One period ahead forecasts of the SVJD-RV-Z model constructed by using the SIR particle filter

Preliminary results – Out-Sample forecasts

- The out-of-sample R-Squared values are comparable with the HAR model, which is commonly used as benchmark.
- Models estimated with MCMC on the first 1000 periods and applied via particle filters to the rest of the data

Horizon	sv	SV-RV	SVJD	SVJD-RV	SVJD-RV-Z	SVJDH	SVJDH-RV	SVJDH-RV-Z	HAR
1 Day	0.3982	0.4577	0.3867	0.4593	0.4648	0.3923	0.4621	0.4652	0.4746
5 Day	0.5556	0.6523	0.5633	0.6564	0.6539	0.5598	0.6562	0.6628	0.6551
20 Day	0.5825	0.6969	0.5902	0.6986	0.7005	0.5795	0.6955	0.7029	0.7064

Further research:

- We will add jumps in the volatility process
- We will add long-memory to the volatility process
- Auxiliary particle filter instead of SIR filter
- Leverage effect in order to model stock market volatility
- Compare with more advanced modifications of HAR

Conclusions

- The estimation of SVJD models on intraday returns as well as the utilization of intraday power-variation estimators both lead to more realistic jump estimates
- These estimates include significantly more pronounced self-exciting effects of the jumps
- Out-Sample analysis of the models shows that they posses predictive power similar to the HAR model
- As our currently used SVJD models are in principle short-memory, while HAR is a long-memory model, it is expected that the incorporation of long-memory features into the SVJD models may increase the predictive power further
- Similarly the inclusion of volatility jumps and other effects may prove to be useful

Thank you for your attention

References

- ANDERSEN, T.G., BOLLERSLEV, T., (1998). Answering the skeptics: Yes, Standard Volaitlity Models Do Provide Accurate Forecasts, International Economic Review
- ANDERSEN, BOLLERSLEV, CHRISTOFFERSEN, DIEBOLD, (2005). Volatility Forecasting, National Bureau of Economic Research
- ANDERSEN, BOLLERSLEV, DIEBOLD, (2003). Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
- ANDERSEN, BOLLERSLEV, DIEBOLD, (2007). Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility, Review of Economics and Statistics
- ANDERSEN, DOBREV, SCHAUMBURG (2010). Jump-Robust Volatility Estimation using Nearest Neighbor Truncation, Federal Reserve Bank of New York
- BARNDORFF-NIELSEN, SHEPHARD, (2004). Power and Bipower Variation with Stochastic Volatility and Jumps, Journal of Financial Econometrics, 2004
- CORSI, PIRINO, RENÓ, (2008). Volatility Forecasting: The Jumps do Matter, 2008
- CHEN, K., POON, S-H. (2013). Variance Swap Premium under Stochastic Volatility and Self-Exciting Jumps
- ERAKER, JOHANNES, POLSON, (2003). The impact of Jumps in Volatility and Returns, The Journal of Finance
- FULOP, LI, YU, (2012). Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach, Hi-Stat Discussion Paper
- **FIČURA, WITZANY, (2015a).** Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods, 2015, SSRN, available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2551807
- FIČURA, WITZANY, (2015b). Bayesian Estimation of Stochastic-Volatility Jump-Diffusion Models on Intraday Price Returns, ACFA 2015, available at: http://amse2015.cz/doc/Ficura_Witzany.pdf
- **FIČURA, WITZANY**, **(2015c)**. Using High-Frequency Power-Variation Estimators in the Bayesian Estimation of Stochastic-Volatility Jump-Diffusion Models, AMSE 2015, available at: https://msed.vse.cz/msed_2015/article/170-Ficura-Milan-paper.pdf
- GONZALEZ, NOVALES, RUBIO, (2011). Estimation of Stochastic Volatility Models with Jumps in Returns for Stock Market Indices
- **JOHANNES, POLSON, (2009).** MCMC Methods for Financial Econometrics, Handbook of Financial Econometrics (eds. Ait-Sahalia and L.P. Hansen)
- LANNE, Markku, (2006). Forecasting Realized Volatility by Decomposition, European University Institute
- SHI, Peng. (2009) Correcting Finite Sample Biases in Conventional Estimates of Power Variation and Jumps, Duke University
- TODOROV, Viktor, (2009) Variance Risk Premium Dynamics: The Role of Jumps
- WITZANY, Jiří, (2013) Estimating Correlated Jumps and Stochastic Volatilities, Prague Economic Papers
- YSUSI, Carla. (2006) Detecting Jumps in High-Frequency Financial Series Using Multipower Variation, Banco de Mexico